Монотонная функция - définition. Qu'est-ce que Монотонная функция
Diclib.com
Dictionnaire ChatGPT
Entrez un mot ou une phrase dans n'importe quelle langue 👆
Langue:

Traduction et analyse de mots par intelligence artificielle ChatGPT

Sur cette page, vous pouvez obtenir une analyse détaillée d'un mot ou d'une phrase, réalisée à l'aide de la meilleure technologie d'intelligence artificielle à ce jour:

  • comment le mot est utilisé
  • fréquence d'utilisation
  • il est utilisé plus souvent dans le discours oral ou écrit
  • options de traduction de mots
  • exemples d'utilisation (plusieurs phrases avec traduction)
  • étymologie

Qu'est-ce (qui) est Монотонная функция - définition

МАТЕМАТИЧЕСКАЯ ФУНКЦИЯ
Возрастающая функция; Убывающая функция; Строго возрастающая функция; Строго убывающая функция; Невозрастающая функция; Неубывающая функция; Монотонность функции
  • Рисунок 1. Монотонно возрастающая функция. Она строго возрастает слева и справа, а в центре не убывает.
  • Рисунок 2. Монотонно убывающая функция.
  • Рисунок 3. Функция, не являющаяся монотонной.

МОНОТОННАЯ ФУНКЦИЯ         
функция, которая при возрастании аргумента либо всегда возрастает (или хотя бы не убывает), либо всегда убывает (не возрастает).
Монотонная функция         
(от греч. monótonos - однотонный)

функция, приращения которой Δf(x) = f(x') - f(x) при Δx = x' - x > 0 не меняют знака, т. е. либо всегда неотрицательны, либо всегда неположительны. Выражаясь не совсем точно, М. ф. - это функции, меняющиеся в одном и том же направлении. Различные типы М. ф. представлены на прилагаемой табл.:

Например, функция у = x3 является возрастающей функцией. Если функция f(x) имеет в каждой точке производную f'(x), которая неотрицательна и обращается в нуль лишь в конечном числе отдельных точек, то f(x) - возрастающая функция. Аналогично, если f'(x) ≤ 0 и обращается в нуль только в конечном числе точек, то f(x) - убывающая функция.

Условие монотонности может выполняться как для всех х, так и для х из некоторого интервала (или отрезка). В этом последнем случае функцию называют монотонной на этом интервале (или отрезке). Например, функция возрастает на отрезке [ - 1, 0] и убывает на отрезке [0, + 1].

М. ф. представляют собой один из простейших классов функций и постоянно встречаются в математическом анализе и теории функций. Если f(x) - М. ф., то для любого x0 существуют пределы

и

Таблица к ст. Монотонная функция.

Монотонная функция         
Моното́нная фу́нкция — функция одной переменной, определённая на некотором подмножестве действительных чисел, которая либо везде (на области своего определения) не убывает, либо везде не возрастает. Более точно, это функция f, приращение которой \Delta f = f(x')-f(x) при \Delta x = (x'- x) > 0 не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительноеМонотонная функция / Математическая энциклопедия. — М.: Советская энциклопедия. И. М. Виноградов. 1977—1985.. Если в дополнение приращение \Delta f не равно нулю, то функция называется стро́го моното́нной.

Wikipédia

Монотонная функция

Моното́нная фу́нкция — функция одной переменной, определённая на некотором подмножестве действительных чисел, которая либо везде (на области своего определения) не убывает, либо везде не возрастает. Более точно, это функция f {\displaystyle f} , приращение которой Δ f = f ( x ) f ( x ) {\displaystyle \Delta f=f(x')-f(x)} при Δ x = ( x x ) > 0 {\displaystyle \Delta x=(x'-x)>0} не меняет знака, то есть либо всегда неотрицательное, либо всегда неположительное. Если в дополнение приращение Δ f {\displaystyle \Delta f} не равно нулю, то функция называется стро́го моното́нной.

Функция называется возраста́ющей, если большему значению аргумента соответствует не меньшее (по другой терминологии — большее) значение функции. Функция называется убыва́ющей, если большему значению аргумента соответствует не большее (по другой терминологии — меньшее) значение функции.

Qu'est-ce que МОНОТОННАЯ ФУНКЦИЯ - définition